Activation of protein kinase C in the spinal cord produces mechanical hyperalgesia by activating glutamate receptors, but does not mediate chronic muscle-induced hyperalgesia

نویسندگان

  • KA Sluka
  • KM Audette
چکیده

BACKGROUND Protein kinase C (PKC) in the spinal cord appears to mediate chronic injury-induced pain, but not acute nociceptive pain. Muscle insult results in increased release of glutamate spinally, and hyperalgesia that is reversed by spinal blockade of NMDA and non-NMDA glutamate receptors. Therefore, we hypothesized that spinal activation of PKC 1) mediates the late phase of hyperalgesia 1 week after muscle insult, and 2) produces mechanical hyperalgesia through activation of NMDA and non-NMDA glutamate receptors. RESULTS Rats were implanted with intrathecal catheters for delivery of drugs directly to the spinal cord. Mechanical withdrawal thresholds of the paw were determined using von Frey filaments. Intrathecal phorbol 12,13 dibutyrate (PDBu) produced a dose-dependent decrease in the mechanical withdrawal threshold of the paw that was prevented by pretreatment with the PKC inhibitor, GF109203X. Pretreatment with an NMDA receptor antagonist (AP5) or a AMPA/kainate receptor antagonist (NBQX) prevented the decrease in mechanical withdrawal threshold by PDBu. Two injections of acidic saline in the gastrocnemius muscle decreased the mechanical withdrawal thresholds of the paw bilaterally 24 h and 1 week after the second injection. However, blockade PKC in the spinal cord had no effect on the decreased withdrawal thresholds of the paw when compared to vehicle controls. CONCLUSION Spinal activation of PKC produces mechanical hyperalgesia of the paw that depends on activation of NMDA and non-NMDA receptors. Chronic muscle-induced mechanical hyperalgesia, on the other hand, does not utilize spinal PKC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization.

Calcitonin gene-related peptide (CGRP), acting through CGRP receptors, produces behavioral signs of mechanical hyperalgesia in rats and sensitization of wide dynamic range (WDR) neurons in the spinal cord dorsal horn. Although involvement of CGRP receptors in central sensitization has been confirmed, the second-messenger systems activated by CGRP receptor stimulation and involved in pain transm...

متن کامل

Electroacupuncture reduces chronic fibromyalgia pain through attenuation of transient receptor potential vanilloid 1 signaling pathway in mouse brains

Objective(s): Fibromyalgia pain is a mysterious clinical pain syndrome, characterized by inflammation in the brain, whose molecular mechanisms are still unknown. Females are more commonly affected by fibromyalgia, exhibiting symptoms such as widespread mechanical pain, immune dysfunction, sleep disturbances, and poor quality of life. Electroacupuncture (EA) has been us...

متن کامل

Phosphorylation of CREB and mechanical hyperalgesia is reversed by blockade of the cAMP pathway in a time-dependent manner after repeated intramuscular acid injections.

Spinal activation of the cAMP pathway produces mechanical hyperalgesia, sensitizes nociceptive spinal neurons, and phosphorylates the transcription factor cAMP-responsive element binding protein (CREB), which initiates gene transcription. This study examined the role of the cAMP pathway in a model of chronic muscle pain by assessing associated behavioral changes and phosphorylation of CREB. Bil...

متن کامل

Activated spinal astrocytes are involved in the maintenance of chronic widespread mechanical hyperalgesia after cast immobilization

BACKGROUND In the present study, we examined spinal glial cell activation as a central nervous system mechanism of widespread mechanical hyperalgesia in rats that experienced chronic post-cast pain (CPCP) 2 weeks after cast immobilization. Activated spinal microglia and astrocytes were investigated immunohistologically in lumbar and coccygeal spinal cord segments 1 day, 5 weeks, and 13 weeks fo...

متن کامل

Supraspinal contributions to hyperalgesia.

Tissue injury is associated with sensitization of nociceptors and subsequent changes in the excitability of central (spinal) neurons, termed central sensitization. Nociceptor sensitization and central sensitization are considered to underlie, respectively, development of primary hyperalgesia and secondary hyperalgesia. Because central sensitization is considered to reflect plasticity at spinal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Pain

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2006